Volume 2, Issue 3, May 2013, Page: 78-82
Effect of Phase Transition Temperature of Bati0.9Sn0.1o3 on the Operating Mode of Ferroelectricrandom Access Memories (FeRAM)
M. Ourrad, Automatic Laboratory, Tlemcen University, Box. 119, Tlemcen 13000, Algeria
A. Merad, Group: Solid State Physics, Theoretical Physics Laboratory, Tlemcen University, Box. 119, Tlemcen 13000, Algeria
T. Benouaz, Automatic Laboratory, Tlemcen University, Box. 119, Tlemcen 13000, Algeria
Received: Mar. 28, 2013;       Published: May 2, 2013
DOI: 10.11648/j.ijmsa.20130203.11      View  2714      Downloads  74
Abstract
The outstanding dielectric, ferroelectric and piezoelectric properties of BaTiO3 make it the desirable primary material for a variety of applications such as nonvolatile memories (RAM). At the Curie’s temperature the dielectric prop-erties of BaTiO3 undergo phase transition. The Landau-Devonshire’s phenomenological theory has been investigated in this paper to present the relation between the temperature and the electric induction. The effect of the variation of electric induction versus temperature of BaTi0.9Sn0.1O3 investigated in the fabrication of nonvolatile ferroelectric random access memories (FeRAM) which may lead us to discover a strange phenomenon called «determinist chaos », now the FeRAM lose its reliability.
Keywords
Ferroelectric Capacitor, FEM-FET Transistor, FeRAM, Landau-Devonshire’s Theory of Phase Transition, Ferroelectric Properties
To cite this article
M. Ourrad, A. Merad, T. Benouaz, Effect of Phase Transition Temperature of Bati0.9Sn0.1o3 on the Operating Mode of Ferroelectricrandom Access Memories (FeRAM), International Journal of Materials Science and Applications. Vol. 2, No. 3, 2013, pp. 78-82. doi: 10.11648/j.ijmsa.20130203.11
Reference
[1]
J.F. Scott, C.A. Araujo, Science 246 (1989) 1400.
[2]
J.F. Scott, Ferroelectric Memories, Springer, 2000.
[3]
C.A. Paz De Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374 (1995) 627.
[4]
H.N. Al-Shareef, K. R. Bellur, A.I. Kingon, O. Auciello, Appl. Phys. Lett. 66 (1995) 239.
[5]
B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401(1999) 682.
[6]
M.W. Chu, M. Ganne, M.T. Caldes, L. Brohan, J. Appl. Phys. 91 (2002) 3178.
[7]
D. Wu, A. Li, T,Z. Liu, N. Ming, J. Appl. Phys. 88 (2000) 5941.
[8]
H. Amorin, V.V. Shvartsman, A,L, Kholkin, M. E Costa, Appl. Phys. Lett.85 (2004) 5667.
[9]
R.R. Das, P. Bhattacharaya, W. Perez, R.S. Katiyar, Appl. Phys. Lett. 81 (2002) 4052.
[10]
A.R. West, Solid state chemistry and its applications 367, (1984) 534. John Wiley
[11]
Shi-Wen Ding, Jia Chai, Chun-Yan Feng, Materials letters 60 (2006) 3241.
[12]
M. Ourrad, T. Benouaz, A. Cheknane, I.RE.PHY.1, (2007) 350.
[13]
T. Benouaz, F. Belkhouche and N. Ghouali, Inter. J. Comp. Elec.Engin. 2 (2010) 887.
[14]
H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Böttger and R Waser, Microelectronic Engi-neering 80 (2005) 296.
[15]
K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker. P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, C. B. Eom, Science 306 (2004) 1005.
[16]
Philippe Depondt "Computational Physics" Chapter 3, Nonlinear Capacitor Model and Landau, page 141, Ed. Vuibert.
[17]
J. Bouting and A. George, «The electric field in the material," ed. Vuibert, (1995).
[18]
Mireille Lontsi Fomena, "Theoretical study of oxygen diffusion in oxide dielectrics," Doctorate thesis of the Uni-versity of Bordeau (2008).
[19]
M. Ourrad, "Study of phase transition in the dielectric of a capacitor," Master Thesis, University of Tlemcen, Algeria (2007).
[20]
Hiroshi Ishiwara , Impurity substitution effects in BiFeO3 thin films, from a viewpoint or Feram applications .Current Applied Physics, Vol. 12, Issue 3, May 2012, Pages 603-611.
[21]
J.-H. Kim, H. Funakubo, Y. Sugiyama, H. Ishiwara, Jpn. J. Appl. Phys. 48 (2009).
[22]
Z. Wen, X. Shen, J. Wu, D. Wu, A. Li, B. Yang, Z. Wang, H. Chen, J. Wang, Appl.Phys. Lett. 96 (2010) 202904..
Browse journals by subject