Volume 3, Issue 4, July 2014, Page: 121-128
Geometrical Structure, Vibrational Spectra and Thermodynamic Properties of Chitosan Constituents by DFT Method
Isaac Onoka, Dept. of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Alexander Pogrebnoi, Dept. of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Tatiana Pogrebnaya, Dept. of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Received: Jul. 24, 2014;       Accepted: Jul. 30, 2014;       Published: Aug. 10, 2014
DOI: 10.11648/j.ijmsa.20140304.11      View  2595      Downloads  192
Abstract
The interaction between glucosamine molecules has been studied theoretically. The geometrical structures of monomer (A), dimer (AA) and trimer (AAA) molecules of glucosamine were optimized and vibrational spectra were calculated by DFT/B3LYP method using GAMESS software (Firefly version 8.0.0). The theoretical vibrational spectra for the glucosamine dimer and trimer correspond well to the experimental IR spectrum of chitosan. The energies and enthalpies of association of A to form the dimer and trimer have been determined. The enthalpies of dimerization, A + A = AA + H2O, and trimerization, AA + A = AAA + H2O, are 48 and 45 kJ/mol, respectively. The thermodynamic functions of the monomer, dimer, and trimer molecules of glucosamine have been calculated.
Keywords
Glucosamine, Glucosamine Oligomers, Chitosan, DFT, Hydrogen Bond
To cite this article
Isaac Onoka, Alexander Pogrebnoi, Tatiana Pogrebnaya, Geometrical Structure, Vibrational Spectra and Thermodynamic Properties of Chitosan Constituents by DFT Method, International Journal of Materials Science and Applications. Vol. 3, No. 4, 2014, pp. 121-128. doi: 10.11648/j.ijmsa.20140304.11
Reference
[1]
J. Venkatesan and S.-K. Kim, "Chitosan composites for bone tissue engineering—An overview," Marine drugs, vol. 8, pp. 2252-2266, 2010.
[2]
N. V. Toan, "Production of Chitin and Chitosan from Partially Autolyzed Shrimp Shell Materials," The Open Biomaterials Journal, vol. 1, pp. 21-24, 2009.
[3]
I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, et al., "Functional characterization of chitin and chitosan," Current Chemical Biology, vol. 3, pp. 203-230, 2009.
[4]
K. Desai, K. Kit, J. Li, P. Michael Davidson, S. Zivanovic, and H. Meyer, "Nanofibrous chitosan non-wovens for filtration applications," Polymer, vol. 50, pp. 3661-3669, 2009.
[5]
M. Benavente, "Adsorption of metallic ions onto chitosan: equilibrium and kinetic studies," pp. 1654-1081, 2008.
[6]
E. S. Abdou, K. S. A. Nagy, and M. Z. Elsabee, "Extraction and characterization of chitin and chitosan from local sources," Bioresource Technology, vol. 99, pp. 1359-1367, 2008.
[7]
A. H. Lu, E. L. Salabas, and F. Schüth, "Magnetic nanoparticles: synthesis, protection, functionalization, and application," Angewandte Chemie International Edition, vol. 46, pp. 1222-1244, 2007.
[8]
A. Fattahi, M. Ghorat, A. Pourjavadi, M. Kurdtabar, and A. Torabi, "DFT/B3LYP Study of Thermochemistry of D-Glucosamine, a Representative Polyfunctional Bioorganic Compound," Scientia Iranica, vol. 15, pp. 422-429, 2008.
[9]
R. Terreux, M. Domard, C. Viton, and A. Domard, "Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation," Biomacromolecules, vol. 7, pp. 31-37, 2006.
[10]
A. A. Granovsky, "Firefly version 8.0.0," www http://classic.chem.msu.su/gran/firefly/index.html.
[11]
K. K. B. M.W. Schmidt, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery., J. Comput. Chem. , pp. 1347-1363, 1993.
[12]
wxMaclPlt. https://code.google.com/p/wxmacmolplt/wiki/Description.
[13]
A. Domard and M. Domard, "Chitosan: structure-properties relationship and biomedical applications," Polymeric biomaterials, vol. 2, pp. 187-212, 2001.
[14]
F.-C. Liu, C.-R. Su, T.-Y. Wu, S.-G. Su, H.-L. Yang, J. H.-Y. Lin, et al., "Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-glucosamine (GlcNAc) and N, N'-Diacetylchitobiose (GlcNAc) 2 from Chitin," International journal of molecular sciences, vol. 12, pp. 5828-5843, 2011.
[15]
E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, et al., "Definition of the hydrogen bond (IUPAC Recommendations 2011)," Pure and applied chemistry, vol. 83, pp. 1637-1641, 2011.
[16]
J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Argüelles-Monal, J. Desbrieres, and M. Rinaudo, "An infrared investigation in relation with chitin and chitosan characterization," Polymer, vol. 42, pp. 3569-3580, 2001.
[17]
G. Cardenas and S. P. Miranda, "FTIR and TGA studies of chitosan composite films," Journal of the Chilean Chemical Society, vol. 49, pp. 291-295, 2004.
[18]
J. Kumirska, M. Czerwicka, Z. Kaczyński, A. Bychowska, K. Brzozowski, J. Thöming, Piotr Stepnowski, "Application of spectroscopic methods for structural analysis of chitin and chitosan," Marine drugs, vol. 8, pp. 1567-1636, 2010.
[19]
S. Kunjachan, S. Jose, and T. Lammers, "Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques," Asian journal of pharmaceutics, vol. 4, p. 148, 2010.
[20]
A. T. Paulino, J. I. Simionato, J. C. Garcia, and J. Nozaki, "Characterization of chitosan and chitin produced from silkworm crysalides," Carbohydrate Polymers, vol. 64, pp. 98-103, 2006.
[21]
K. Tokarev, "OpenThermo ", v.1.0 Beta 1 (C) ed. http://openthermo.software.informer.com/, 2007-2009.
Browse journals by subject