Volume 4, Issue 4, July 2015, Page: 246-255
Simulated Sunlight Induced the Degradation of Rhodamine B Over Graphene Oxide-Based Ag3PO4@AgCl
Mahgoub Ibrahim Shinger, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China; Chemistry Department, Faculty of Science, International University of Africa, Khartoum, Sudan
Ahmed Mahmoud Idris, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China
Dong Dong Qin, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China
Hind Baballa, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China
Duoliang Shan, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China
Xiaoquan Lu, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, China
Received: May 21, 2015;       Accepted: Jun. 6, 2015;       Published: Jun. 30, 2015
DOI: 10.11648/j.ijmsa.20150404.14      View  4125      Downloads  108
Abstract
A facile, environmentally friendly and economical in-situ ion-exchange method was successfully fabricated graphene oxide-based Ag3PO4@AgCl photocatalyst to promote the photocatalytic activity of Ag3PO4@AgCl. The as synthesized GO-Ag3PO4@AgCl composite was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy and photoluminescence (PL). The morphology and the structure of the synthesized photocatalyst were characterized by field-emission scanning electron microscopy (SEM) and transmitter electron microscopy (TEM). The elements detection and the chemical state of the sample were investigated by X-ray photoelectron spectroscopy (XPS) analysis. GO-Ag3PO4@AgCl exhibited higher photocatalytic activity over Ag3PO4@AgCl and Ag3PO4 for the degradation of Rhodamine B (RhB) under simulated sunlight, and the highest photocatalytic activity was obtained by GO-Ag3PO4@AgCl photocatalyst with Cl/P ratio of 0.5. The quenching study using different scavengers investigated that the photogenerated holes (h+) and superoxide radicals (•O2-) played a key role in the degradation of RhB. The kinetic study revealed that the degradation of RhB over GO-Ag3PO4@AgCl-0.5 under simulated sunlight followed the first-order kinetics.
Keywords
GO, Ag3PO4, AgCl, RhB and Simulated Sunlight Irradiation
To cite this article
Mahgoub Ibrahim Shinger, Ahmed Mahmoud Idris, Dong Dong Qin, Hind Baballa, Duoliang Shan, Xiaoquan Lu, Simulated Sunlight Induced the Degradation of Rhodamine B Over Graphene Oxide-Based Ag3PO4@AgCl, International Journal of Materials Science and Applications. Vol. 4, No. 4, 2015, pp. 246-255. doi: 10.11648/j.ijmsa.20150404.14
Reference
[1]
Kubacka, M.F. Garcia, G. Colon, Chemical Reviews, 2012, 112, 1555-1614.
[2]
H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J. Ye, Advanced Materials, 2012, 24, 229-251.
[3]
Ratna1, B.S. Padhi, Environmental Sciences, 2012, 3, 940-955.
[4]
Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J. H. Ye, American Chemical Society, 2011, 133, 6490-6492.
[5]
Y.P. Bi, H.Y. Hu, S.X. Ouyang, G.X. Lu, J.Y. Cao, J.H. Ye, Chemical Communications, 2012, 48, 3748-3750.
[6]
W.G. Wang, B. Cheng, J.G. Yu, G. Liu, W.H. Fan, Chemistry – An Asian J., 2012, 7, 1902-1908.
[7]
H. Wang, L. He, L.H. Wang, P.F. Hu, L. Guo, X.D. Han, J.H. Li, CrystEngComm, 2014, 14, 8342-8344.
[8]
K. Santosh, T. Surendar, B. Arabind, S. Vishnu, Materials Chemistry A, 2013, 1, 5333-5340.
[9]
Y. P. Bi, H. Y.Hu, S.X. Ouyang, Z.B. Jiao, G.X. Lu, J.H. Ye, Chemistry - A European J., 2012, 18, 14272-14275.
[10]
W.F. Yao, B. Zhang, C.P. Huang, C. Ma, X.L. Song, Q.J. Xu, Materials Chemistry, 2012, 22, 4050-4055.
[11]
W. Liu, M. L. Wang, C.X. Xu, S.F. Chen, X.L. Fu, Materials Research Bulletin, 2013, 48, 106-113.
[12]
L.L. Zhang, H.C. Zhang, H. Huang, Y. Liu, Z.H. Kang, Chemistry, 2012, 36 1541-1544.
[13]
Y. Bi, S. Ouyang, J. Cao, J. Ye, Physical Chemistry Chemical Physics, 2011, 13, 10071-10075.
[14]
Q. J. Xiang, J.G. Yu, M. Jaroniec, Chemical Society Reviews, 2012, 41, 782-796.
[15]
X.Q. An, J.C. Yu, RSC Advances, 2011, 1, 1426-1434.
[16]
B.J. Jiang, C.G. Tiang, Q.J. Pan, Z. Jiang, J.Q. Wang, W.S. Yan, H.G. Fu, Physical Chemistry C, 2011, 115, 23718-23725.
[17]
H. Zhang, X.F. Fan, X. Quan, S. Chen, H.T. Yu, Environmental Science and Technology, 2011, 45, 5731-5736.
[18]
G.D. Chen, M. Sun, Q. Wei, Y.F. Zhang, B.C. Zhu, B. Du, Hazardous Material, 2013, 244, 86-93.
[19]
A. Yanhui, W. Peifang, W. Chao, H. Jun, Q. Jin, Applied Surface Science, 2013, 271, 265-270.
[20]
H. Guangyu, Q. Maogong, S. Xiaoqiang, C. Qun, W. Xin, C. Haiqun, Powder Technology, 2013, 246, 278-283.
[21]
B.J. Jiang, Y.H. Wang, J.Q. Wang, C.G. Tiang, W.J. Li, Q.M. Feng, Q.J. Pan, H.G. Fu, ChemCatChem, 2013, 5, 1359-1367.
[22]
W.S. Hummers, R.E. Offeman, American Chemical Society, 1958, 80, 1339-1339.
[23]
M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Environmental Science and Technology, 2009, 43 8361-8366.
[24]
P.Y. Dong, Y.H. Wang, B.C. Cao, S.Y. Xin, L.N. Guo, J. Zhang, F. H. Li, Applied Catalysis B, 2013, 132, 45-53.
[25]
Q.H. Liang, Y. Shi, W.J. Ma, Z. Li, X.M. Yang, Physical Chemistry, Chemical Physics, 2012, 14, 15657-15665.
[26]
H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Applied Physics, 1994, 75, 2042-2047.
[27]
H.N. Ng, C. Calvo, R. Faggiani, Acta Crystallographica Section B: Structural Science, 1978, 34, 898-899.
[28]
A. Pongsaton, S. Sumetha, Advanced Powder Technology, 2014, 25, 1026-1030.
[29]
V. Gopinath, S. Priyadarshini, N.M. Priyadharsshini, K. Pandian, P. Velusamy, Materials Letters, 2013, 91, 224-227.
[30]
X.F. Yang, H.Y. Cui, Y. Li, J.L. Qin, R.X. Zhang, H. Tang, American Chemical Society Catalysis, 2013, 3, 363-369.
[31]
J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Advanced Functional Materials, 2010, 20, 4175-4181.
[32]
X. Gu, Sh.Zhang, B. Wang, Y. Qiang, Optoelectronics Letters, 2014, 10, 219-222.
[33]
M. Zhu, P. Chen, M. Liu, American Chemical Society Nano, 2011, 5, 4529-4536.
[34]
M. Ge, N. Zhu, Y.P. Zhao, J. Li, L. Liu, Industrial & Engineering Chemistry Research, 2012, 51, 5167-5173.
[35]
W.G. Wang, J.G. Yu, Q.J. Xiang, B. Cheng, Applied Catalysis B, 2012, 119, 109-116.
[36]
Z. Hu, Y.D. Huang, S.F. Sun, W.C. Guan, Y.H. Yao, P.Y. Tang, C. Li, Carbon, 2012, 50, 994-1004.
[37]
M. Zhu, P. Chen, M. Liu, Material Chemistry, 2011, 21, 16413-16419.
[38]
A.V. Murugan, T. Muraliganth, A. Manthiram, Chemistry of Materials, 2009, 21, 5004-5006.
[39]
Z.G. Yi, N. Kikugawa, T. Kako, H. Stuart-Williams, H. Yang, J.Y. Cao, W. J. Luo, Z.S. Li, Y. Liu, R.L. Withers, Nature Materials, 2010, 9, 559-564.
[40]
X.G. Ma, B. Lu, D. Li, R. Shi, C.S. Pan, Y.F. Zhu, Physical Chemistry C, 2011, 115, 4680-4687.
[41]
J.Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Chen, Hazardous Material, 2012, 217, 107-115.
[42]
T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H.S. Teng, Advanced Functional Material, 2010, 20, 2255-2262.
[43]
S. Bai, X. Shen, H. Lv, G. Zhu, C. Bao, Y. Shan, Colloid and Interface Science, 2013, 405, 1-9.
Browse journals by subject