-
Effect of Production Variables on the Physico-Mechanical Properties of Fibre-Reinforced Plastic Composites Boards Produced from Waste Paper and Re-Cycled Polyethlene
Aguda Lawrence,
Kehinde Rebecca,
Orire Luke,
Olajide Benard,
Akala Abisayo,
Ajao Olawale
Issue:
Volume 10, Issue 1, January 2021
Pages:
1-7
Received:
23 November 2020
Accepted:
8 December 2020
Published:
12 January 2021
Abstract: The mechanical and physical properties of fibre reinforced composite boards (FRCB) made from waste paper and recycled polyethylene was investigated. The composite boards were produced at three levels of mixing ratio (50:50, 60:40 and 70:30) and three levels of board density (1000 Kg/m3, 1100 Kg/m3 and 1200 Kg/m3). The fibre from the paper served as the reinforcement while the polyethylene served as the matrix or binder to form the composite board. The board produced was subjected to different standard tests to attain mechanical and physical properties such as modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA) and thickness swelling (TS). The mean values obtained for Thickness Swelling after 24 hours and 48 hours ranged from 0.02 ± 0.04 to 6.05 ± 3.21 and 3.06 ±1.27 to 12.59 ±0.05 respectively and that of water absorption after 24 hours and 48 hours ranged from 4.68 ± 0.25 to 15.78 ± 6.15 and 5.36 ± 0.16 to 18.37 ± 6.03 respectively. The mean value for MOR and MOE ranged from 16.36 ± 9.71 to 18.17 ± 6.76 and 3813.4 ± 1938.76 to 4842.8 ± 1381.05 respectively. These results shown that both the WA and TS decreased with the increase in the board density and mixing ratio. On the other hand, MOR and MOE of the board increased with the increase of board density and the mixing ratio. The results obtained from this study shown that natural fibre from waste paper and recycled polyethylene are compatible for use to produce composite material.
Abstract: The mechanical and physical properties of fibre reinforced composite boards (FRCB) made from waste paper and recycled polyethylene was investigated. The composite boards were produced at three levels of mixing ratio (50:50, 60:40 and 70:30) and three levels of board density (1000 Kg/m3, 1100 Kg/m3 and 1200 Kg/m3). The fibre from the paper served as...
Show More
-
Wetting and Bonding Behavior of SUS 304 Metal and Forsterite Ceramic with a PbO-Bi2O3-B2O3-ZnO Glass Frit
Hang Choi,
Tadachika Nakayama,
Jin Sam Choi
Issue:
Volume 10, Issue 1, January 2021
Pages:
8-11
Received:
12 August 2020
Accepted:
4 September 2020
Published:
23 February 2021
Abstract: The joining behavior of metal to ceramic was investigated using glass frit media. Glass frit with a composition of 71.5PbO-24Bi2O3-2.5B2O3-1.5ZnO-0.5SiO2 in mol. % was designed to bond forsterite ceramic and SUS 304 metal. The glass frit demonstrated a glass transition temperature of 250°C and a thermal expansion coefficient of 15.9 x 10-6/°C, which isbetween the values of SUS 304 (17.8×10-6/°C) and forsterite (9.9×10-6/°C). The contact angle was smaller than 90° at a temperature of 460°C. Redox reaction at the interface between forsterite and SUS304 was found to appear when the electrons in the metal part moved toward the glass part and the oxygen ions in glass moved to the metal side. The decrease of the surface tension due to the PbO solubility on the forsterite side contributed to the better wetting behavior at low temperature. Due to the ionic bonding nature, the glass was able to chemically react with forsterite ceramic and form a rough boundary. The Fe metal in the SUS 304 was oxidized to form FeO ceramic. A thin FeO layer on the SUS 304 surface helped the glass frit to wet the SUS 304, and clear tight bonding between the glass and SUS 304 was achieved.
Abstract: The joining behavior of metal to ceramic was investigated using glass frit media. Glass frit with a composition of 71.5PbO-24Bi2O3-2.5B2O3-1.5ZnO-0.5SiO2 in mol. % was designed to bond forsterite ceramic and SUS 304 metal. The glass frit demonstrated a glass transition temperature of 250°C and a thermal expansion coefficient of 15.9 x 10-6/°C, whic...
Show More
-
Delicacy Management on Kiloton Dry Wet Spinning Bath Liquid
Fang Liu,
Dong Liu,
Pengzong Guo,
Guo Li,
Rui Yang
Issue:
Volume 10, Issue 1, January 2021
Pages:
12-17
Received:
12 January 2021
Accepted:
2 February 2021
Published:
26 February 2021
Abstract: During the dry-jet wet spinning process of polyacrylonitrile carbon fiber precursor, the fluctuation of the coagulation bath liquid level affects the stability of the nozzle directly. The motion trajectory and the motion intensity in all directions of the fluid during the movement of the fiber in the coagulation bath fluid field were studied. A three-dimensional model of the cross flow and jet collision motion trajectory was established, and the impact of fluids with different strengths on the surface of the coagulation bath was analyzed. Solidification of the liquid surface in the fitting strength of the peak effect of the return wave overflow trough coupled superimposed to determine the coagulation bath surface to eliminate interfering fluctuations affecting factors. Based on the above analysis, a smart device for real-time monitoring of the coagulation bath air layer has been developed by using the damping equipment in the coagulation bath, where the impact of various fluid waves on the liquid surface can be eliminated on fixed point or position. According to the understanding of kiloton dry-jet wet spinning precursor fiber production line, in-depth exploration has been made to control the high dynamic coagulation bath level effectively from the perspective of technology and delicacy management.
Abstract: During the dry-jet wet spinning process of polyacrylonitrile carbon fiber precursor, the fluctuation of the coagulation bath liquid level affects the stability of the nozzle directly. The motion trajectory and the motion intensity in all directions of the fluid during the movement of the fiber in the coagulation bath fluid field were studied. A thr...
Show More
-
The Use of Taguchi Method to Elaborate Good ZnO Thin Films by Sol Gel Associated to Dip Coating
Modou Pilor,
Bouchaib Hartiti,
Alle Dioum,
Hicham Labrim,
Youssef Arba,
Amine Belafhaili,
Mounia Tahri,
Salah Fadili,
Bassirou Ba,
Philippe Thevenin
Issue:
Volume 10, Issue 1, January 2021
Pages:
18-24
Received:
16 February 2021
Accepted:
9 March 2021
Published:
17 March 2021
Abstract: ZnO thin films have been prepared by dip coating sol gel method using Taguchi technique. The underlying principle was to make something as little as conceivable the measure of examination and make sense of the best conditions for developing ZnO thin films with great properties. We used a trial plan of L9, with three levels (high, medium, low) and four elements (annealing temperature, precursor concentration, dip coating speed, annealing time). For each paper three sol-gel arrangements were arranged, and test is rehashed three time. We have chosen to carry out the optimization based on the gap energy calculated from the transmittance of the films obtained. Each sample was characterized with spectrophotometer. This characterization allowed us to draw the transmittance curve and to deduce the gap energy of each deposited ZnO thin film. A signal to noise and an analysis of variance (ANOVA) were used to determine the optical and electrical properties. The film that we obtained with the optimal condition was exanimated by using the characterization methods like UV-visible spectroscopy, X-ray diffraction, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectroscopy). With the legal statement under oath condition, ZnO thin film showed high crystal quality and the transmittance is a greater amount of 90%.
Abstract: ZnO thin films have been prepared by dip coating sol gel method using Taguchi technique. The underlying principle was to make something as little as conceivable the measure of examination and make sense of the best conditions for developing ZnO thin films with great properties. We used a trial plan of L9, with three levels (high, medium, low) and f...
Show More